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Influence of inlet and bulk noise on Rayleigh-Be´nard convection with lateral flow
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Spatiotemporal properties of convective fluctuations and of their correlations are investigated theoretically in
the vicinity of the threshold for onset of convection in the presence of a lateral through-flow using the full
linearized equations of fluctuating hydrodynamics. The effect of external forcing by inlet boundary conditions
on the downstream evolution of convective fields is separated from the effect of internal bulk thermal forcing
with the use of spatial Laplace transformations. They show how the spatial variation of fluctuations and of their
correlations are governed by the six spatial characteristic exponents of the field equations.
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I. INTRODUCTION

The formation of macroscopic flow structures@1# in hy-
drodynamic systems like, e.g., Rayleigh-Be´nard convection
or Taylor-Couette flow that are driven out of thermal eq
librium by externally imposed heating or shear, respective
are usually investigated by deterministic hydrodynamic fi
equations. However, under specific circumstances the in
ence of imperfections that break a symmetry of these eq
tions, of external deterministic or stochastic perturbatio
and of internal thermal noise on the pattern formation p
cess should be taken into account to achieve a more rea
and quantitative description of experiments. One promin
example are the so-called noise sustained structures@2–12#
in the convectively unstable parameter regime@13–15# in
Taylor-Couette @4,5,8–10# and Rayleigh-Be´nard @6,7,12#
systems. They arise when an externally imposed throu
flow or an internally generated group velocity is lar
enough to ‘‘blow’’ the pattern out of the system according
the deterministic hydrodynamic field equations. In this dr
ing regime one observes in experiments@4,5,7,12# structures
that are sustained by sources that generate perturbatio
the band of modes that are amplified according to the su
critical deterministic growth dynamics in downstream dire
tion sufficiently far away from the inlet. Another examp
are convective pattern fluctuations observed in closed c
tainers in the subcritical driving range@16,17# where accord-
ing to the deterministic equations the system would be q
escent.

Thermal-noise-generated fluctuating forces were in
duced by Landau and Lifshitz@18# as volume coarse-graine
microscopic fluctuations contributing to the stress tensor
the heat current. Then Zaitsev and Shliomis@19# and Graham
@20# were the first to study the effect of this Gaussian ad
tive white noise forcing on Rayleigh-Be´nard convection
@21#. A more general discussion of hydrodynamic field flu
tuations out of equilibrium was given by Schmitz and Coh
for the Rayleigh-Be´nard system@22#. Also the Ginzburg-
Landau amplitude equation@1# describing slow spatiotempo
ral field variations in the vicinity of a pattern forming insta
bility in terms of the amplitude of the critical mode has be
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augmented by additive stochastic forcing@20,23,24,9,25#.
Graham@20# used multiple scale expansion techniques
infer from the Landau-Lifshitz equations of fluctuating h
drodynamics the additive forcing entering into the amplitu
equation. Scho¨pf and Zimmermann did the same for bina
fluid mixtures @26#. Swift and Hohenberg used the critica
behavior of correlation functions to find this relation for pu
fluids in a simplified version without stochastic heat curre
@23#. Boundary conditions for the amplitude equation
semi-infinite geometry were evaluated for a through-flo
setup where microscopic transversal momentum den
fluctuations are swept via the inlet into the bulk@8#.

Besides the Ginzburg-Landau approximation the Sw
Hohenberg model equations@23# were used@24,27# with a
stochastic forcing extension derived in Ref.@24# to compare
with convection experiments in which the Rayleigh numb
was temporally ramped through threshold@28# or modulated
periodically @29#. Also stochastic generalized Lorenz-lik
models obtained by truncating mode expansions of the
drodynamic field equations were derived and compared@30#
with the experiments@28,29#. The comparisons@24,27,30,31#
of various model equations and in particular the work by v
Beijeren and Cohen@32# incorporating the whole band o
supercritically unstable modes showed that thermal no
was far too small to explain the experimental observatio
@28,29# with time-dependent heating quantitatively. How
ever, the convective fluctuation intensity that was measu
under static subcritical driving@17# was shown@17,33# to
agree with the prediction@32# following from internal ther-
mal noise based on linear fluctuating hydrodynamics. R
cently experimental findings of subcritical fluctuating ele
troconvection in nematic crystals, i.e., a system with a mu
larger noise susceptibility than Rayleigh-Be´nard convection
were reported that showed deviations from linear fluctuat
hydrodynamics@34#.

The theoretical work done so far within the framework
the full fluctuating hydrodynamic field equations dealt wi
spatially extended systems making convenient use of sp
Fourier modes. However, in finite systems the effect of no
on pattern fluctuations—say, in the convectively unstable
gime in downstream direction away from an inl
boundary—has been studied theoretically@2,3,6,8–11# only
©2001 The American Physical Society01-1
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by means of amplitude-equation approximations. A rea
might be that the proper treatment, e.g., of the inlet bound
conditions for the fluctuating hydrodynamic field equatio
describing Rayleigh-Be´nard convection with a latera
through-flow is somewhat intricate as shown in this wo
Here we investigate within the full framework of linearize
fluctuating hydrodynamics the effect of an externally im
posed through-flow and the role that under such circu
stances the inlet boundary conditions play in the downstre
growth of convective fluctuations. Thus we distinguish b
tween internal forcing due to thermal noise in our sem
infinite system and external forcing at the inlet, e.g., by p
turbations that might enter the system via the through-flo

A particular experimental Rayleigh-Be´nard setup is pos
sibly subject to other noise sources as well: For exam
vibrations and rotations that accelerate the convection ce
a whole, thus exerting fluctuating~multiplicative! body
forces; temperature fluctuations enforced from the outside
the boundaries of the cell, e.g., in the cooling and heating
the horizontal top and bottom plates, respectively; deform
tions of the cell caused by sound or by mechanical stre
that are generated by differentially moving fixtures. Co
pared to thermal-noise-generated fluctuations of the fluid
self ~inside the cell or coming by the flow through the inl
into it! the above listed nongeneric perturbations can be c
trolled and diminished by appropriate experimental coun
measures. Moreover, in order for them to generate ma
scopic flow structures in the convectively unstable regi
they have to emit noise into the narrow band of modes
are amplified deterministically. So the noise would have
contain the right frequency in combination with the rig
wave number. Furthermore, among the noise sources
meet this requirement those that are operating close to o
the inlet are the most effective ones since they offer
longest amplification length/time for the noise-genera
convective field perturbations to grow while being advec
downstream.

Here we consider statistically stationary conditions wh
the inlet forcing and the thermal noise have been opera
for a long time. In this situation we found it natural to Fo
rier decompose fields and forces in frequency space and
investigate the six characteristic complex spatial eigenva
K(v) of the hydrodynamic field equations that describe
spatial response to a perturbation of frequencyv and that
govern the spatial variation of field fluctuations and th
correlations. To evaluate them we use spatial Laplace tr
formations since this method allows for an easy separatio
the effects of inlet forcing and bulk thermal forcing on flu
tuating fields and on their correlation functions in a way th
is similar to the treatment@11# of the amplitude equation in
semi-infinite geometry.

The paper is organized as follows: In Sec. II we spec
the system and the fluctuating hydrodynamic equations
Sec. III we investigate its six spatial characteristic expone
and compare with the four exponents of the amplitu
equation approximation. In Sec. IV we briefly review th
dynamics of fluctuations and correlations in infinite, trans
tional invariant systems in comparison with the Ginzbu
Landau approximation before we elucidate in Sec. V
05630
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fluctuation dynamics in semi-infinite systems. There
show how to separate bulk-generated fluctuation effects f
inlet-generated fluctuations and how to evaluate correla
functions using spatial Laplace transforms. Section VI co
tains conclusions. Details on the treatment of inlet bound
conditions are given in Appendix A and Appendix B give
formulas for Laplace-transformed thermal force correlatio

II. SYSTEM

We consider a horizontal fluid layer of heightd in the
homogeneous gravitational fieldg52g ez that is directed
downwards. A positive temperature differenceDT is im-
posed between the lower warm and upper cold confin
boundaries. The associated Rayleigh number is

Ra5
agd3

kn
DT, ~2.1!

wherek is the thermal diffusivity andn the kinematic vis-
cosity. The thermal expansion coefficienta follows from a
linear isobaric equation of state for the mass density,r/r0
512a(T2T0), for small deviations of the temperatureT
from its meanT0. We also consider a mean lateral throug
flow Ū in x direction that is caused, e.g., by an externa
applied pressure gradient with a through-flow Reyno
number Re5(d/n) Ū. We investigate here a small through
flow, say Re<5. In a layer ofd.0.5 cm, n.0.01 cm2/s
(H2O) the through-flow velocity for Re55 would be Ū
.0.1 cm/s. Instead of Re we take the Pe´clet number

Pe5s Re ~2.2!

as second control parameter besides Ra. Heres5n/k is the
Prandtl number of the fluid.

A. Deterministic field equations

Ignoring thermal fluctuations the macroscopic behavior
the fluid is described by the balance equations for mass,
mentum, and heat that we shall use in Oberbeck-Boussin
approximation@18,35#

“•U50, ~2.3a!

~ ] t1U•“ ! U5s “

2 U 2“P1s ~ T2T0 ! ez ,
~2.3b!

~] t1U•“ ! T5 “

2 T. ~2.3c!

Here U5U ex1V ey1W ez is the velocity field. We scale
lengths with the heightd of the fluid layer, time with the
vertical thermal diffusion timed2/k, the effective pressureP
with k2/d2, and temperatures withkn/(agd3).

1. Conductive state

For small Ra, Re a laterally homogeneous solution
stable that describes a so-called conductive state without
tical convective flow. In it the temperature
1-2
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Tcond5T01RaS 1

2
2zD ~2.4!

varies linearly between the temperatures

T~z50!5T01
1

2
Ra, T~z51!5T02

1

2
Ra, ~2.5!

that are imposed at the lower and upper boundaries, res
tively. In addition there might be a lateral positive throug
flow in x direction

Ucond5Ucond ex . ~2.6!

2. Horizontal boundary conditions

For no-slip horizontal boundaries withU50 at z50, 1
the through-flow is plane Poiseuille flow with parabolic v
locity profile Ucond

ns 56 Pe z (12z). On the other hand
for free-slip impermeable horizontal boundaries that impo

W5]zU5]zV50 at z50, 1, ~2.7!

the through-flow has az-independent plug flow profile
Ucond

fs 5Pe. Such a through-flow can be transformed away
a Galilei transformation to a system that comoves with
plug-flow velocity if the fluid layer is laterally unbounded o
if laterally periodic boundary conditions inx direction are
applied.

In finite or semi-infinite geometry, however, where t
externally imposed through-flow enters the system, say
x50 the effect of the through-flow on the convective pert
bations that grow in downstream direction away from t
inlet cannot be trivially transformed away. Since the no-s
Poiseuille through-flow yields in these laterally finite geo
etries similar effects on the downstream growing convect
structures as in the analytically better manageable free
situation we shall investigate in this paper only the free-s
case~2.7!.

B. Stochastic equations for deviations
from the conductive state

The starting point for our investigation of the spatiote
poral behavior of the convective perturbations

dU5U2Ucond, dT5T2Tcond, dP5P2Pcond,
~2.8!

of the conductive state are the linearized field equations

“•dU50, ~2.9a!

~] t1Pe]x! dU52“ dP1s ~¹2 dU 1dT ez !1F,
~2.9b!

~ ] t1Pe]x ! dT5 Ra dW1“

2 dT1G, ~2.9c!

for the fluctuations~2.8!. They are generated by thermal
fluctuating stressessab and heat currentsq @18#
05630
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¹b sab , G5“•q. ~2.9d!

Here it is useful to considerF5F'1Fi to be decomposed
into a ‘‘transversal’’ part that is divergence free,“•F'50,
and into a ‘‘longitudinal’’ part without rotation,“3Fi50.
The adjectives ‘‘transversal’’ and ‘‘longitudinal’’ refer to di
rections ofF in wave-vector space. The longitudinal partFi
forces ‘‘longitudinal’’ momentum, pressure, and mass de
sity fluctuations~sound! that are decoupled from the ‘‘trans
versal’’ fluctuations ofdU @18#. Since the longitudinal fluc-
tuations of dU are not of interest for the growth o
macroscopic convective structures we focus with Eq.~2.9a!
on the transversal fluctuations. Then the pressure fluctuat
are given according to Eq.~2.9! by

¹2dP5s ]z dT1“•F. ~2.10!

For the form of the stochastic forcesF andG that enter into
the equations~2.9! for the deviations from the conductiv
state we take as many previous authors the ansatz of La
and Lifshitz@18#, thus assuming local equilibrium to hold i
the imposed vertical temperature gradient. Then the stat
cal properties of the real fluctuating forces are given by
following averages:

^Fa~r ,t !&5^G~r ,t !&5^Fa~r ,t ! G~r 8,t8!&50,
~2.11a!

^Fa~r ,t ! Fb~r 8,t8!&

52 Q2 F dab “•“81¹b¹a81S z

nr
2

2

3D ¹a¹b8 G
3d~r2r 8! d~ t2t8!, ~2.11b!

^G~r ,t ! G~r 8,t8!&52 Q1 “•“8 d~r2r 8! d~ t2t8!.
~2.11c!

Since the temperature variation across the fluid layer is sm
whenDT/T0!1 we use for the strength of the forces

Q25kB T0

n

r d k3
, Q15

T0 a2 g2 d4 k

n3 cp

Q2 , ~2.12!

the equilibrium parameters evaluated at the mean temp
tureT0 that appears in Eq.~2.12! in its unreduced form. Here
cp is the specific heat per unit mass andkB is the Boltzmann
constant.

A few remarks are in order:~i! In Eq. ~2.11! lengths and
times are reduced quantities.~ii ! The volume viscosityz ap-
pears in Eq.~2.11b! in front of the ‘‘longitudinal’’ term
;¹a¹b8 . It therefore does not enter into the correlations
the ‘‘transversal’’ velocity field fluctuations.~iii ! Thermal
heat current fluctuations are for most experimental set
much less relevant than stress fluctuations since, e
Q1 /Q2.1024 for a layer of water of height 1 cm at room
temperatures. And finally,~iv! the spectral weight in fre-
quency and wave-vector space of the stochastic forces~2.11!
does not drop to zero for largev and k. This causes ultra-
1-3
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violet divergence problems when evaluating in a direct w
the mean square of velocity fluctuations resulting from E
~2.9! at a fixed r ,t via an integration over the whole fre
quency and wave-vector space. These convergence prob
are due to extending the hydrodynamic theory~2.9! beyond
its range of applicability to infinitely large wave vectors a
frequencies. The problems do not arise when conside
only the critical fluctuations, that have according to a line
deterministic theory the largest growth rates or smallest
cay rates, respectively.

C. Projection onto critical modes

A standard-linear analysis@36# of the unforced dynamics
of the convective perturbations~2.8! in laterally unbounded
geometry gives an orthogonal basis of eigenmodes that s
the space of all solutions of Eqs.~2.9a–2.9c! with boundary
conditions~2.5! and ~2.7!. It shows that modes of the form
e.g., dT;sin(pz) eikx es(k)t with wave number close tokc

5p/A2, no variation iny direction perpendicular to the di
rection of the wave vectork5kex, and a single maximum in
vertical direction at mid height of the layer are the lea
damped. The characteristic exponent with the largest
part is

s~k!52 i k Pe2
s11

2
q21AS s21

2 D 2

q41s Ra
k2

q2
,

~2.13!

where q2 5 k21p2. At the marginal stability boundary
Rastab(k) 5 q6/k2, the growth rate Res changes sign. The
instability occurs for free-slip boundary conditions with th
critical wave numberkc5p/A2 and critical frequencyvc
5kcPe at Rac527p4/4. Modes with larger vertical varia
tion, say;sin(2p z), can grow only at much higher Ra@36#.
Therefore it suffices to consider here modes with the crit
vertical profiles. For smallk2kc and small

e5
Ra

Rac
21 ~2.14!

the characteristic exponent~2.13! varies as

s~k!52 ik Pe1@e2j0
2 ~k2kc!

2#/t0 , ~2.15a!

and

Rastab~k!5Rac@11j0
2~k2kc!

2#, ~2.15b!

with

j0
25

8

3p2
, ~2.16a!

t05
2

3p2

s11

s
. ~2.16b!

In the remainder of this paper we project the fields~2.8!
into the function subspace with the critical variation inz and
05630
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y. Thus,dW, dT, Fz , andG are projected in Eq.~2.9! onto
A2 sin(pz) while dU, dP, and Fx are projected onto
A2 cos(pz),

S w

u

f z

g

D ~x,t !5
1

A2 Ly
E

2Ly

Ly
dyE

0

1

dzA2 sin~pz! S dW

dT

Fz

G

D
3~x,y,z,t !, ~2.17a!

S u

p

f x

D ~x,t !5
1

A2 Ly
E

2Ly

Ly
dyE

0

1

dzA2 cos~pz!S dU

dP

Fx

D
3~x,y,z,t !. ~2.17b!

Here 2Ly is the ‘‘periodicity’’ length in y direction that we
consider if necessary in the limitLy→`. Thus, we investi-
gate convective perturbations withky50 that show noy
variation. For such perturbations the dynamics of t
velocity-field component iny direction,dV(x,ky50,z,t), is
decoupled from the other fields since@] t 1Pe]x2s (]x

2

1]z
2)# dV(x,ky50,z,t)5Fy(x,ky50,z,t). Hence we do not

discussdV fluctuations further.
We should like to mention that a convective channel w

rectangular crosssection that is long inx direction and nar-
row in y direction, say of width 2Ly of the order of the layer
height, is an appropriate experimental setup to enforce c
vective patterns of straight-parallel rolls with axes aligned
y direction and wave vectork5kxex , i.e., ky50, also in the
presence of a lateral through-flow. In that case they projec-
tion in Eq. ~2.17! would be on the criticaly mode for this
geometry. However, in systems where the width 2Ly is much
larger than 1, experiments and numerical simulations of
hydrodynamic equations have shown@37–40# a competition
between transverse rolls with axes perpendicular to the fl
direction and longitudinal ones with roll axes aligned in flo
direction that has also been investigated with coup
Ginzburg-Landau equations@41,42#.

D. Projected field equations

The linear equations of motion for the fields~2.17! in the
function subspace with the critical variation inz andy follow
directly from Eq.~2.9!. In view of the fact that a stochasti
process described by Eqs.~2.9! and~2.11! is statistically sta-
tionary and since we are interested only in the long-ti
statistical dynamics of the fluctuations and not in their init
value dependence we found it most convenient to Fou
transform the fields~2.17! into frequency space, e.g
w(x,v)5*2`

` dt eivt w(x,t). Henceforth we consider, unles
otherwise stated, Fourier-transformed fluctuations depend
on x and the real frequencyv. They obey the stochasti
hydrodynamic equations~HE!

]xu1pw50, ~2.18a!
1-4
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~2 iv1Pe]x!u52]xp1s ~]x
22p2! u1 f x,

~2.18b!

~2 iv1Pe]x!w5pp1s ~]x
22p2! w1s u1 f z,

~2.18c!

~2 iv1Pe]x!u5~]x
22p2! u1Ra w1g. ~2.18d!

The statistical behavior of the fluctuating forces projec
according to Eq.~2.17! is given by

^ f a~x,v!&5^g~x,v!&5^ f a~x,v!@g~x8,v8!#* &50,
~2.19a!

^ f a~x,v!@ f b~x8,v8!#* &52 Q2 2pd~v2v8!

3Sab d~x2x8!, ~2.19b!

^g~x,v! @g~x8,v8!#* &52 Q1 2pd~v2v8!

3~]x]x81p2! d~x2x8!,

~2.19c!

with

S115S 4

3
1

z

nr D ]x ]x81p2, S335]x ]x81S 4

3
1

z

nr Dp2,
fo
t-

le

rg

05630
d

S135p F]x82S z

nr
2

2

3D ]xG , S315p F]x2S z

nr
2

2

3D ]x8G .
~2.19d!

The superscript * in Eq.~2.19! and throughout this pape
denotes complex conjugation. Here we have discarded
stress fluctuations13 at the horizontal boundariesz50,1. So
right at the horizontal boundaries thermal fluctuations do
change the lateral momentum balance of the fluid.

In order to investigate the spatial variations of the fluctu
tions of the fieldsu, w, u, andp we also rewrite Eq.~2.18!
into the system

~M2]x! C5j ~2.20a!

of differential equations of first order in thex derivative for
the six-component vectors

C5~]xw,]xu,p,u,w,u! t, ~2.20b!

j5S f z

s
,g,2 f x ,0,0,0D t

~2.20c!

of fields and forces, respectively, with
M5S Pe

s
0 2

p

s
0 p22 i

v

s
21

0 Pe 0 0 2Ra p22 iv

2sp 0 0 iv2sp2 Pep 0

0 0 0 0 2p 0

1 0 0 0 0 0

0 1 0 0 0 0

D . ~2.20d!
li-
The correlation matrix̂j i(x,v) @j j (x8,v8)#* & of the forces
follows directly from Eq.~2.19!.

E. GLE approximation

For Rayleigh numbers close to the critical one, i.e.,
small e the fluctuation dynamics around the hea
conductivity state can be described in form of a comp
amplitudeA(x,t) multiplying the critical solution of the un-
forced equations~2.18! in time space

S w~x,t !

u~x,t ! D 5S ŵ

û
D A~x,t ! ei (kcx2vct)1c.c., ~2.21!

where vc5kc Pe and ŵ,û are constants such thatû/ŵ
5Rac /qc

2 . The amplitude obeys the stochastic Ginzbu
Landau equation~GLE! @20#
r

x

-

@t0 ~] t1vg ]x!2e2j0
2 ]x

2# A~x,t !5G~x,t !, ~2.22!

with a complexstochastic forceG(x,t). The statistical dy-
namics ofG was derived@20,26# from Eq. ~2.9! via a multi-
scale analysis to be of the form

^G~x,t !&5^ G~x,t ! G~x8,t8!&50, ~2.23!

^G~x,t ! @G~x8,t8!#* &5g d~x2x8! d~ t2t8!. ~2.24!

In Sec. IV we will verify this result with

uŵu2g5
4Q2

9p2s2 S 11
s2

Rac

Q1

Q2
D , ~2.25!

with a different method that is more direct and less comp
cated than the standard-multiscale analysis.
1-5
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Note that the coefficientsc0 andc1 that normally appear
in the complex GLE for oscillating patterns@1# vanish for the
horizontal plug flow resulting from the free-slip bounda
conditions. Furthermore, in this case one has

vg5Pe. ~2.26!

III. SPATIAL GROWTH BEHAVIOR

In Sec. II C we have reviewed the standardtemporal
growth analysis of a spatially extended mode;eikx with real
wave numberk and laterally constant amplitude. Its releva
characteristic complextemporalexponents Eq. ~2.13! deter-
mines the oscillatory behavior and the exponential growth
decay behaviores(k)t of this mode as a function of timet.
Here we consider thespatial variationeiK (v)x of a ‘‘tempo-
rally extended’’ oscillatory modee2 ivt, with real frequency
v and temporally constant amplitude that might be genera
by a continuously operating spatially localized source of p
turbation. The characteristic complexspatialexponentK(v)
determines via ReK the wave number of the oscillator
mode and via ImK its growth or decay withx.

A. Characteristic spatial exponents

The spatial variation inx direction of the field fluctuations
in frequency space is governed by the six spatial charac
istic exponents of Eq.~2.18! or, equivalently, of the 636
system of differential equations~2.20!. In fact the solution of
the deterministic equation~2.20a! with j50 is a superposi-
tion of the six eigenvectorsJj ( j 51,2, . . . ,6) ofM multi-
plied by exponentials of the form

Cj5Jj eiK jx. ~3.1!

Here iK j is the j th eigenvalue ofM and v is the real fre-
quency. The eigenvaluesiK j and eigenvectorsJj depend on
v, Pe, and Ra. If necessary we denote the dependence o
also sometimes by the argumente5Ra/Rac21.

In general the six eigenvaluesK j have to be calculated
numerically. Being roots of the equation det(M2 iK )50
they, however, obey the relations

(
j 51

6

K j52 i PeS 11
1

s D , ~3.2a!

(
j 51

6
1

K j
5PeS 1

v1 i p2
1

1

v1 i s p2D , ~3.2b!

)
j 51

6

K j52p2 ~v1 i p2!S v

s
1 i p2D . ~3.2c!

Furthermore, with K j (v,Pe) also 2@K j (2v,Pe)#*
5Kl(v,Pe) is one of the six eigenvalues and because of
mirror symmetry2K j (v,Pe)5Kn(v,2Pe). Moreover, the
imaginary part of an eigenvalueK j (v,Pe) can vanish only a
the frequencyv j

05Pe ReK j for our free-slip boundary con
ditions.
05630
t

r

d
r-

r-

Ra

e

In the following we consider the through-flow Pe´clet
number to be positive. Then we chose the numbering of
six eigenvalues such thatK1 andK3 are the two ‘‘critical’’
exponents that cross the real axis atk56kc with critical
frequency v56vc56Pekc , respectively, when Ra
5Rac . For the parameters investigated here the imagin
parts of the other eigenvalues remain finite. So we defineK5
to have positive imaginary part while those ofK2 ,K4 ,K6 are
negative. The first four eigenvalues are pairwise related
each other by K3(v)52@K1(2v)#* and K4(v)
52@K2(2v)#* while K5(v)52@K5(2v)#* and K6(v)
52@K6(2v)#* . Figure 1 shows the trajectories of allK j
for e520.05 in the complex wave-number plane as fun
tions of v.

The imaginary parts of$K j% determine the spatial growth
or decay of a fluctuation with frequencyv while the real
parts of$K j% denote its wave number. It should be noted th
the characteristic spatial exponents—unlike the temporal
ponent~2.13!—depend nontrivially on the through-flow tha
thus cannot be transformed away by a Galilei transformat
This shows already that a proper physical interpretation
the $K j% requires inhomogeneities or boundary conditio
that break the translational invariance in thex direction. In
this way one finds~cf. Sec. V! that the contributionseiK jx

with j 52,4,6 (j 51,3,5) to the fieldsC describe the spatia
variation in upstream~downstream! direction towards nega
tive ~positive! x resulting from a perturbation or from
boundary condition operating with frequencyv, say, atx
50. On the background of this identification one unde

FIG. 1. Characteristic spatial exponents of the hydrodyna
equations ~full arrows! and of the GLE approximation~open
circles! in the complex wave-number plane. Orientations and lo
tions of the arrows indicate howK j (v) varies with increasing fre-
quency forv2vc525,22,0,2,5. The eigenvaluesK5,6 with the
large imaginary parts do not appear by construction in the G
Parameters ares51, Pe51, e520.05. With increasinge,
K1(K3) crosses the real axis ate50, kc , vc (2kc , 2vc). At the
bordereconv

c between convective and absolute instability the traj
tories of K1 ,K2 and of K3 ,K4 touch, respectively. Beyondeconv

c

they are reconnected differently.
1-6
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stands quite naturally that the downstream-growth leng
1/ImK j ( j 51,3,5) increase with growing through-flow sinc
the latter dilates the envelope of perturbations away from
source. On the other hand, the upstream-growth len
21/ImK j ( j 52,4,6) decrease with increasing Pe since
through-flow compresses the intensity envelope of the p
turbations towards the source, making the growth steepe

The fact that for positivee the imaginary parts of the
‘‘critical’’ eigenvaluesK1 andK3 are negative for bands o
frequencies around6vc , respectively, signals an instabilit
via the downstream amplification of fluctuations with ne
critical frequencies. These bands open up ate50, v
56vc ~cf. Fig. 2!. The imaginary parts of the other chara
teristic exponents do not change sign withe.

B. Spatial exponents of the GLE approximation

The GLE approximation ansatz~2.21! yields in v space
fields of the form, e.g.,

w~x,v!5ŵ eikcx A~x,v2vc!1@ŵ eikcx A~x,2v2vc!#* .

~3.3!

The two spatial growth ratesK̂1,2 of A(x,v) defined by the
two solutions of the unforced GLE~2.22! in frequency space
of the form

A~x,v!;eiK̂ (v)x, ~3.4!

FIG. 2. Frequency dependence of the imaginary~a! and real~b!
parts of the spatial eigenvaluesK1 ,K2 of the hydrodynamic equa
tions for subcritical drivinge520.05~dashed lines! and supercriti-
cal driving e50.01 ~solid lines!. The corresponding GLE approxi
mation~3.7a! is shown by upwards~downwards! pointing triangles
for e50.01 (e520.05). For the smallestueu50.01 shown here
only Im K2 and ReK1 display small deviations from their GLE
behavior whenv differs sufficiently fromvc . Parameters ares
51, Pe51 so thate50.01,econv

c .
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are given by@11#

K̂1,2~v! j052 i Aeconv
c 6 i Aeconv

c 2e2 i t0 v. ~3.5!

Here

econv
c 5

t0
2

4 j0
2 vg

2 ~3.6!

is the boundary between convective and absolute instab
within the GLE approximation@2#. Thus, the first two spatia
exponents ofw(x,v) Eq. ~3.3! are

K1,2~v!5kc1K̂1,2~v2vc!. ~3.7a!

They come from the first term in the GLE approximatio
~3.3!. The next two exponents

K3,4~v!52kc1K̂1,2~v1vc!, ~3.7b!

come from the second term in Eq.~3.3! where we have used
the relation

K̂1,2~v!52@K̂1,2~2v!#* ~3.8!

or equivalently the relationK1,2(v)52@K3,4(2v)#* that is
discussed below Eqs.~3.2! to follow from the field equa-
tions.

Figures 1 and 2 show a comparison of the amplitu
equation results~3.7! with the corresponding eigenvalues
the full-field equations. Note that within the GLE approx
mation the eigenvaluesK5,6 with the large imaginary parts
implying small-scale variations do not appear since by c
struction the GLE is restricted to describe only slow-spa
variations. The agreement between the approximated and
act space eigenvaluesK1, . . . ,4 improves with decreasingueu
being the better the smaller ImK is.

Figure 2 shows the variation of imaginary part~a! and real
part ~b! of K1 and K2 with frequencyv for a subcriticale
520.05 ~dashed lines! and a supercriticale50.01 ~full
lines! below the thresholdeconv

c in comparison with the GLE
approximation~open triangles! discussed in Sec. III B.

C. Convective versus absolute instability

Whenever at a stability threshold the frequency of pert
bations is nonzero with a finite group velocityvg
5@]v(k)/]k#c , one has to distinguish between spatiote
poral growth behavior of spatiallyextendedperturbations
;e6 ikcx with real wave number6kc and of spatiallylocal-
ized or varying perturbations. The former have a positi
temporalgrowth rate, Res(6kc).0, for Ra.Rac according
to Eq.~2.13!. Equivalently the spatial growth exponentsK1,3
cross the real axis at6(kc ,vc) signalling for Ra.Rac spa-
tial growth for perturbations within a frequency band arou
6vc and a wave number band around6kc . For the sake of
notational conciseness we restrict our discussion to the
of K1 ,kc ,vc . But the results apply as well toK3 ,2kc ,
2vc .
1-7
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Consider now a small spatially localized perturbation, i
a wave packet consisting of a linear superposition of
tended perturbations of the form;eikx with realk and small
amplitude. For Ra.Rac it might contain modes that can tem
porally grow, Res(k).0, and others that decay. The cen
of such a wave packet or pulse perturbation propagates
the group velocityvg while its envelope is growing since th
pulse contains modes that grow in time.

Now there are two parameter regimes to be distinguish
~i! In the so called convectively unstable parameter reg
@13–15# the wave packet moves with the velocityvg faster
away than it grows—while growing in the frame comovin
with vg the pulse moves out of the system so that the ba
conductive state is restored in the absence of permane
operating forces. In other words, the two fronts that join
wave packet’s intensity envelope to the structureless s
propagate both in the direction in which the packet cen
moves. ~ii ! In the so called absolutely unstable parame
regime the growth rate of the packet is so large that one f
propagates in the laboratory frame opposite to the center
tion. Thus, the packet expands not only into the direction
the pulse motion but also opposite to it@13,14# so that even-
tually the initial perturbation can fill the entire system.

The boundary in parameter space between convective
absolute instability is marked by parameter combinations
which one of the fronts of the linear wave packet reverts
propagation direction in the laboratory frame: In the conv
tively unstable regime this front propagates in the same
rection as the center of the packet, in the absolutely unst
regime it moves opposite to it, and right on the bound
between the two regimes the front is stationary in the la
ratory frame. This parameter combination can be determi
by a saddle-point analysis of the linear complex dispers
relations(K) over the plane of complex wave numbers@15#.

The condition of vanishing front propagation velocity
equivalent to finding the parameters for which

Res~K* !50, ~3.9a!

with K* denoting the appropriate saddle position ofs(K) in
the complex wave number plane given by

ds~K !

dK U
K

*

50. ~3.9b!

The solution of Eq.~3.9! yields the sought-after boundary i
parameter space between the convectively and the absol
unstable parameter regime.

We have solved Eq.~3.9! numerically for the dispersion
s(K) Eq. ~2.13! of the hydrodynamic field equations an
compared the result fors51 with the result of the GLE
approximation. For the small Pe´clet numbers Pe<5 explored
here the saddleK* of the HE dispersion relation~2.13! and
the boundaryeconv

c (Pe) of the HE agrees well with the GL
results K* 5kc2 i (vgt0/2j0

2)5kc2( i /4)Pe and econv
c

5(t0
2/4j0

2)vg
25(1/6p2)Pe2, respectively. Note thatvg5Pe

and c150 for the free-slip horizontal boundaries as me
tioned earlier.
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The conditions~3.9! for the boundary between convectiv
and absolute instability imply the ‘‘collision condition’’ o
Briggs @14#,

d

dK
det@M~v!2 iK #uK

*
50, ~3.10!

for the appearance of a double spatial eigenvalue. In Fig
one sees how with increasinge the two spatial eigenvalue
K1 ~coming from the upper complex half plain! andK2 ap-
proach each other. Ate5econv

c both branches meet a
K1(v* )5K2(v* )5K* . For our small Pe valuesv

*
HE is

very close to the GLE saddle frequencyv
*
GLE5vc .

For the driving 0,e,econv
c a frequency band aroundvc

with Im K1(v),0 appears. Perturbations that are genera
locally and sustained continuously with frequencies with
this band are spatially amplified in downstream directio
i.e., in the direction ofvg . This frequency band is delimited
within the GLE byv65vc62Aeeconv

c /t0 @8,11#.
Note that ourlinear growth analysis of spatially varying

perturbations is restricted to the driving rangee,econv
c

where an initially localized perturbation is ‘‘blown’’ out o
the system. In the driving rangee.econv

c of absolute insta-
bility, on the other hand, a perturbation acting withv* will
grow at every location: the spatial eigenvalueK1(v* ) con-
trolling the linear stationary solution;eiK 1x loses its signifi-
cance there since anonlinear solution invades in upstream
direction the whole system.

IV. LATERALLY UNRESTRICTED SYSTEMS

To better understand how a restricted geometry and i
conditions, say atx50, influence the statistical dynamics o
the fluctuating fields we first review the simpler case o
system that is extending fromx52` to x5`.

A. Fluctuating hydrodynamics

In this section we discuss the statistical dynamics of
fluctuations of the convection fieldsC(x,v) Eq. ~2.20b! that
are produced by the thermally fluctuating forcesj(x,v) Eq.
~2.20c!.

In unrestricted geometry one can solve Eq.~2.20a! di-
rectly,

C~k,v!5@M~v!2 ik#21 j~k,v!, ~4.1!

via spatial Fourier transform C(k,v)
5*2`

` dx e2 ikx C(x,v) with k denoting a real wave numbe
In this way one finds

w~k,v!5
s k2 g2 ik ~q22 iV! ~p f x1 ik f z!

D
, ~4.2!

u~k,v!5
~sq22 iV! q2 g2 ik Ra~p f x1 ik f z!

D
, ~4.3!

with
1-8
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D~k,v!5s det~M2 ik !

5q2 ~sq22 iV! ~q22 iV!2s k2 Ra, ~4.4a!

V5v2k Pe, q25p21k2. ~4.4b!

The combinationp f x1 ik f z of the forces is proportional to
the z component of the ‘‘transversal’’ part (f')z
5(k/q2) (p f x1 ik f z). This reflects the fact that only ‘‘trans
versal’’ forces enter into the forcing of the ‘‘transversa
velocity field. The lateral velocity field fluctuations follow
from Eq. ~4.2! with the continuity equationiku52pw and
pressure fluctuations follow directly from Eq.~2.10!: 2q2p
5spu1 ik f x1p f z . Thus we restrict our discussion tow
andu only.

Note that the fluctuations with the critical wave numbe
and frequencies6(kc ,vc) are strongly amplified when Ra i
increased. They diverge at Rac with, e.g.,

D~kc ,vc!5~Rac2Ra! s kc
2 ~4.5!

vanishing linearly. It is obvious from Eqs.~4.2! and ~4.3!
that the characteristic determinantD(k,v) Eq. ~4.4! of the
deterministic hydrodynamic field equations governs thev
2k dependence of the instability-driven amplificatio
mechanism.

From Eqs.~4.2! and ~4.3! and using Eq.~2.19! one di-
rectly obtains the correlation functions

Cw w ~k,v!5
^ w~k,v! @w~k8,v8!#* &

~2p!2 d~v2v8! d~k2k8!
~4.6a!

52Q2

k2q4 ~V21q4!

uDu2

3S 11
Q1

Q2

k2

q2

s2

V21q4D , ~4.6b!

Cu u ~k,v!52Q2 Ra2
k2 q4

uDu2
F11

Q1

Q2

q2

k2
~V21s2q4!G .

~4.7!

Here we used the fact that withj(x,t) being real one has
@j(k,v)#* 5j(2k,2v). The same holds forw andu.

Note that because of Eq.~4.5! the correlation functions o
the critical modes6(kc ,vc) diverge ;1/e2 for e→02

within the linear theory of fluctuating hydrodynamics. Sin
here the fluctuations are spatially extended;eikx with real
wave numberk there does not appear by construction a
percritical driving range where convectively unstable pert
bations could be blown out of the system. Such a situa
can arise only in restricted geometry with spatially varyi
amplitudes. Thus, here in Sec. IV the linear analysis of
tended modes with wave numberk is restricted to the driving
range Ra,Rastab(k).
05630
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B. Fluctuating hydrodynamics versus GLE approximation

The statistical dynamics of the fluctuating fields with
the GLE approximation is readily obtained from solving t
amplitude equation~2.22! by double Fourier transform

A~k,v!5
2G~k,v!

e2j0
2 k21 i ~v2k vg! t0

, ~4.8!

and using the field representation~2.21! leading to

S w~k,v!

u~k,v!
D 5S ŵ

û
D A~k2kc , v2vc!

1S ŵ

û
D *

@A~2k2kc ,2v2vc!#* .

~4.9!

Herevc5kcvg5kc Pe. Since

^G~k,v! @G~k8,v8!#* &5g~2p!2 d~k2k8! d~v2v8!,

~4.10!

one immediately obtains that within the GLE approximatio
~4.8! and ~4.9! the field correlations are given by

Cww
GLE~k,v!5uŵu2 gH 1

@e2j0
2 ~k2kc!

2#21~v2k vg!2 t0
2

1
1

@e2j0
2 ~k1kc!

2#21~v2k vg!2 t0
2J ,

~4.11a!

Cuu
GLE~k,v!5

uûu2

uŵu2
Cww

GLE~k,v!, ~4.11b!

with û/ŵ5Rac /qc
2 . Here we have used the fact that the va

ishing of ^G(k,v)G(k8,v8)& that follows from Eq.~2.23!
implies ^A(k,v)A(k8,v8)&50 as well whereas

^A~k,v! @A~k8,v8!#* &5g
~2p!2 d~k2k8! d~v2v8!

~e2j0
2 k2!21~v2k vg!2 t0

2
.

~4.12!

1. Identification of g

One can elegantly and conveniently determine the forc
strengthg in the stochastically forced GLE~2.22! without
having to go to the lengthy multiple-scale derivation of R
@20#. To that end we require that the fluctuation spec
~4.11! obtained within the GLE approximation agree with th
hydrodynamic fluctuation spectra~4.6! and ~4.7! based on
the full-field equations for the critical fluctuations with wav
numberkc and frequencyvc when approaching the patter
forming instability threshold of the unforced field equation
1-9
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i.e., in the limit e→02. Thus identifying the divergence
;(1/e2) of Eq. ~4.6! for kc , vc ande→0 with the same one
of Eq. ~4.12! one finds

uŵu2g52Q2

qc
2

s2Rac
S 11

Q1

Q2

s2

Rac
D , ~4.13!

and similarly

uûu2g52Q2

Rac

s2qc
2 S 11

Q1

Q2

s2

Rac
D . ~4.14!

Swift and Hohenberg@23# have identifiedg in a somewhat
similar approach neglecting, however, the small contribut
;Q1. Our result ~4.13! and ~4.14! agrees with the resul
obtained in@26# when one uses as in@26# the scaling of the
critical modes in whichŵ51 and û5Rac /qc

2 . For a direct
comparison one has to note that these authors have eval
g for a two-component mixture. Therefore, one has to se
Eq. ~5.12! of Ref. @26# the separation ratioC50 that corre-
sponds to our case of a one-component fluid. The same r
was obtained also by Graham@20#.

2. Comparison of the spectra C(k,v)

Figure 3 shows that the GLE approximation,

Cww
GLE~k,v!52Q2

qc
2

s2Rac
S 11

Q1

Q2

s2

Rac
D

3H 1

@e2j0
2 ~k2kc!

2#21~v2k vg!2 t0
2

1
1

@e2j0
2 ~k1kc!

2#21~v2k vg!2 t0
2J ,

~4.15!

Cuu
GLE~k,v!5

Rac
2

qc
4

Cww
GLE~k,v!, ~4.16!

agrees quite well with the fluctuation spectraCww(k,v) Eq.
~4.6! andCuu(k,v) Eq. ~4.7!, respectively, for the small val
ues ofe520.05 ande520.1 shown there. The left colum
showsC(kc ,v) versusv and the right columnC(k,vc) ver-
susk both for Pe55. In each case we have ignored the sm
contributions;Q1 /Q2 in Eqs. ~4.6! and ~4.7! and in Eqs.
~4.15! and ~4.16!.

Here and in the following the GLE result forw fluctua-
tions agrees better with the spectrum of fluctuating hydro
namics than the spectrum ofu fluctuations. The reason lies i
the ratio

Cuu~k,v!

Cww~k,v!
5

Ra2

V21q4
~4.17!
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depending onk, v, Ra, and Pe while the GLE yields for thi
ratio of mean square amplitude fluctuations the cons
Rac

2/qc
4 .

3. C(xÄ0,v)

In Fig. 4 we compare the frequency dependence of
total spectral weight in wave-number space

C~x50,v!5E
2`

` dk

2p
C~k,v! ~4.18!

for w and u fluctuations that result from fluctuating hydro
dynamics with those following from the GLE approximatio

Cww
GLE~x50,v!5Q2

qc
2

j0
4s2Rac

S 11
Q1

Q2

s2

Rac
D

3@G~v2vc!1G~v1vc!#,

~4.19a!

FIG. 3. Reduced correlation spectra of vertical velocity fluctu
tions ~a,c! and of temperature fluctuations~b,d! resulting in a later-
ally infinite system from fluctuating hydrodynamics~full lines! and
from the GLE approximation~dotted lines!. The left column~a,b!
shows frequency spectra fork5kc and the right column~c,d! wave-
number spectra forv5vc . The spectra diverge with increasinge at
e50,kc ,vc as discussed in the text. Parameters ares51, Pe55.
Cww(Cuu) is reduced by 2Q2 ~0.02Q2 Ra2).
1-10
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Cuu
GLE~x50,v!5

Rac
2

qc
4

Cww
GLE~x50,v!. ~4.19b!

In the first ~second! contribution of

G5
1

uK̂12K̂2u2 S 1

Im K̂1

2
1

Im K̂2
D ~4.19c!

in the square bracket of Eq.~4.19a! the arguments of the
GLE approximation~3.5! for K̂1,2 arev2vc (v1vc). Un-
fortunately the complexity of the hydrodynamic spectra do
not allow for an analytical wave-number integration of Eq
~4.6! and ~4.7!.

With increasing through-flow the fluctuation intensi
C(x50,v) decreases for frequencies close tovc and spreads
over a broader band aroundvc . The time-displaced correla
tions of fluctuations at the common position are reduc
since in a finite through-flow fluctuations that are genera
also by forces operating further away in upstream direct
enter into the correlator. The difference between the hyd
dynamic fluctuation strengthCww(x50,v) and the GLE ap-
proximation Cww

GLE(x50,v) grows since the hydrodynami
velocity field fluctuations are enhanced by the factor (V2

1q4) in the numerator of Eq.~4.6b!—the growth in Pe leads

FIG. 4. Frequency dependence of the reduced total spe
weight in wave-number space,C(x50,v), of velocity fluctuations
~a! and of temperature fluctuations~b! according to the hydrody-
namic equations~full lines! in comparison with the GLE approxi
mation ~dotted lines! for different through-flow Pe´clet numbers as
indicated. Parameters ares51, e520.05. Cww(Cuu) is reduced
by 2Q2 ~0.02Q2 Ra2).
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via V25(v2k Pe)2 to an increased weight of the large-k
modes for which the GLE approximation deteriorates.

4. C(k,tÄ0)

Finally, we discuss the wave-number dependence of
total spectral weight

C~k,t50!5E
2`

` dv

2p
C~k,v! ~4.20!

in frequency space. This mean-squared amplitude ofk
mode is for free-slip horizontal boundaries independent
the through-flow—the Pe dependence drops out in integ
tions over allv reflecting the invariance of the laterally un
bounded system with free-slip horizontal boundaries a
plug flow under a Galilean transformation. One finds

Cww~k,t50!5
Q2

s~11s!

~11s!Rastab~k!2Ra

Rastab~k!2Ra

k2

q2

3F11
Q1

Q2

s2

~11s!Rastab~k!2RaG
~4.21!

and

Cuu~k,t50!5
Q2

s~11s!

Ra2

Rastab~k!2Ra

3F11s
Q1

Q2

~11s!Rastab~k!2Ra

Ra2 G .

~4.22!

Within the GLE approximation one finds from Eq.~4.11!
that

Cww
GLE~k,t50!5

Q2

3s~11s! S 11
Q1

Q2

s2

Rac
D

3F 1

ue2j0
2 ~k2kc!

2u
1

1

ue2j0
2 ~k1kc!

2uG
~4.23!

and

Cuu
GLE~k,t50!5

Rac
2

qc
4

Cww
GLE~k,t50!. ~4.24!

Also here for the total spectral weightsC(k,t50) the con-
tributions;Q1 from forcing due to stochastic heat curren
is small in comparison to the forcing due to stochas
stresses.

C(k,t50) diverges at the marginal stability boundari
Rastab(k) of the HE or estab5j0

2(k2kc)
2 of the GLE ap-

proximation, respectively~see Fig. 5!. At k50 incompress-
ibility does not allow momentum currents inz direction.
ThereforeCww ~and alsoCuu for Q150) vanishes}k2 for

ral
1-11
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small k that cannot be reproduced within the GLE. T
dominant contribution;Q2 to Cuu(k,t50) comes from the
stochastic momentum currents that distort the vertical te
perature stratification. Nevertheless, the forcing by stocha
heat currents;Q1 yields a small but finite value ofCuu for
large as well as smallk.

The most conspicuous difference between the GLE
proximation and the hydrodynamic result is the large-k be-
havior of Cww(k,t50) andCuu(k,t50). The mean square
of the stochastic forces that generate fluctuations incre
within the theory of fluctuating hydrodynamics quadratica
with k. This leads for largek to unphysical behavior in the
small-k hydrodynamic theory~cf. the discussion in Sec
III B !. Within the GLE, however, the stochastic forces exc
all Fourier modes with the same amplitude with which t
critical mode is forced. Thus the total GLE-mode intensit
of fields drop to zero at largek.

V. SEMI-INFINITE SYSTEMS

In this section we investigate how the fluctuation spec
of the hydrodynamic fieldsC(x,v) @Eq. ~2.20b!# are influ-
enced by the fact that the system is taken to be semi-infin
0<x,`, and by the specific boundary conditions impos
at x50. In particular, we evaluate how the correlation sp

FIG. 5. Wave-number dependence of the reduced total spe
weight in frequency space,C(k,t50), of velocity fluctuations~a!
and of temperature fluctuations~b! according to the hydrodynami
equations~full lines! in comparison with the GLE approximatio
~dotted lines! for two different drivinge as indicated.Cww(Cuu) is
reduced by 2Q2 ~0.02 Q2 Ra2). Both are independent of th
through-flow for free-slip horizontal boundary conditions, c.f. te
The Prandtl number iss51.
05630
-
tic

-

es
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tra of the fluctuations taken at a common positionx, i.e., the
mean-squared fluctuation amplitudes vary with distancx
from the inlet.

A. Spatial Laplace transformation

The fluctuating fieldsC(x,v) that enter into the spectr
depend~i! on the fluctuating hydrodynamic forcesj(x,v)
and ~ii ! on the boundary conditions at the inlet,x50. To
keep track of these two different dependencies we foun
convenient to use spatial Laplace transformations accord
to

f ~x!↔ f ~K !52 i E
0

`

dx e2 iKx f ~x!, ~5.1!

with K being a complex wave number. Thus the 636 system
~2.20! of differential equations

@M~v!2]x# C~x,v!5j~x,v! ~5.2a!

for the field vectorC(x,v) @Eq. ~2.20b!# reads after Laplace
transformation

@M~v!2 iK # C~K,v!5j~K,v!1 i C~x50,v!.
~5.2b!

The use of spatial Laplace transformations provides an a
tional computational convenience since it allows to evalu
correlation functions of the fieldsC(K,v) in Laplace space
algebraically thus circumventing involved differential an
integral operations.

B. Diagonalization

To solve the inhomogeneous boundary value probl
~5.2! we diagonalize it with the 636 matrix T(v) that di-
agonalizesM(v) @Eq. ~2.20d!# i.e.,

~T 21MT ! j k5 iK j d jk , ~5.3!

whereK j (v) ( j 51, . . . ,6) are the sixspatial eigenvalues dis
cussed in Sec. III A. The matrixT consisting of the six eigen
vectorsJj of M is a function of theK j (v,Ra,Pe). In the
following we sometimes suppress alsov in the argument
list. Introducing transformed field vectorsw and force vec-
tors z, respectively, by

w5T 21 C, z5T 21 j, ~5.4!

the 636 system~5.2! of coupled equations is transforme
into six decoupled equations

~ iK j2]x!w j~x!5z j~x!, ~5.5a!

~ iK j2 iK !w j~K !5z j~K !1 iw j~x50!, ~5.5b!

for the transformed fieldsw j ( j 51, . . . ,6). Their respective
solution is

ral

.
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w j~x!5eiK jx Fw j~x50!2E
0

x

dx8 e2 iK j x8z j~x8!G ,
~5.6a!

w j~K !5
i z j~K !2w j~x50!

K2K j
. ~5.6b!

From Eq. ~5.6! one can obtain the solution of the origin
fields C by using the inverse transformation of Eq.~5.4!

C5T w, j5T z. ~5.7!

In this way the solution in Laplace space

C~K !5G~K !@ i j~K !2C~x50!# ~5.8a!

takes the form of the propagator matrixG multiplying the
inhomogeneityi j(K)2C(x50) where

G~K,v!5T~v!G̃~K,v!T 21~v!, G̃j l ~K,v!5
d j l

K2K j~v!
.

~5.8b!

Here G̃ is the diagonal propagator matrix entering into E
~5.6b!. In real space the solution~5.8a! reads

C~x!52G~x! C~x50!1E
0

x

dx8 G~x2x8! j~x8!.

~5.8c!

The propagator matrix

G~x,v!5T~v! G̃~x,v! T 21~v!, G̃j l ~x,v!52d j l eiK j (v)x

~5.9!

in real space is the Laplace transform of Eq.~5.8b!.

C. Boundary conditions

Not all boundary conditionsC j (x50)5( l 51
6 Tj l w l(x

50) arephysicallyadmissible in the mathematically unre
stricted solution ~5.6! and ~5.7!. The physical solution
C(x)5Tw(x) has to remain finite for all 0,x,` as long as
the driving is subcritical,e,0. Thus, in view of the nonsin
gular form of the transformation matrixT(v) one has to
demand thatw j (x→`) remains finite for all j 51, . . . ,6
when e,0. This is automatically guaranteed forp51,3,5
@43# for which ImKp.0. However, form52,4,6 one would
have exponential growth with ImKm,0 if wm(x50) is not
chosen appropriately. To avoid a divergence in Eq.~5.6a! for
x→` in the subcritical driving regime one has to require th

lim
x→`

Fwm~x50!2E
0

x

dx8 e2 iK mx8zm~x8!G50,

~5.10a!

or equivalently

wm~x50!5 i zm~Km! ~5.10b!
05630
.

t

for m52,4,6. Thus, the boundary condition forwm(x50)
being constrained by a physical nondivergence condition
the fieldswm(x→`) is fixed by the spatial Laplace trans
form of the fluctuating forcezm @Eq. ~5.10b!# evaluated for
the complex wave numberKm . Inserting the condition
~5.10b! into the solution~5.6b! for m52,4,6 one sees tha
the physically admissible fields

wm~K !5 i
zm~K !2zm~Km!

K2Km
~5.11!

do not contain poles at the three complex wave numbersKm
(m52,4,6) lying in the lower complex half plane. This con
dition is a direct extension of the result obtained@11# for the
case of the GLE. So the residue, limK→Km

(K2Km) w(K), of

the poles atKm (m52,4,6) in the fieldw(K)—and with it
also in the fieldC(K)—are zero. When the driving crosse
over into the supercritical range 0,e,econv

c then the wave
number K1 (K3) crosses into the lower complex wave
number plane forv close tovc (2vc) leading to exponen-
tial growth in positivex direction as discussed in Sec. II
Moreover, only the characteristic ‘‘critical’’ exponentsK1,3
cause supercritical growth in the driving range 0,e
,econv

c .
We should like to stress that the nondivergence condit

~5.10! fixes only three of the six boundary conditions; th
other three boundary conditions are still free to be chos
Thus with w2,4,6(x50) being fixed one can choosew1,3,5(x
50) in an arbitrary way so that six conditions onC j (x
50) ( j 51, . . . ,6) would result viaC5Tw from this choice.
However, we can also externally fix three of theC j fields at
the inlet instead, say,C45u, C55w, and C65u. The
other threeC1,2,3 would then be determined by the cond
tions ~5.10! together withC4,5,6 ~cf. Appendix A!. This will
be done in Sec. V E 1.

D. Decomposition of the fieldsw

Before we impose in the next subsection boundary con
tions on the original fieldsC and evaluate their correlatio
functions we treat first the more simple case of impos
external conditions on three of the transformed fieldsw. As
shown in the previous sectionwm(x50)5 i zm(Km) is fixed
internally by bulk forcing properties form52,4,6. The
boundary conditionswp(x50) (p51,3,5) on the other three
fields are still free. Here we consider the inlet boundary c
ditions wp(x50,v) (p51,3,5) to be chosen externally an
to be statistically independent from the bulk forces. Then
six solutionsw j @Eq. ~5.6!# can be decomposed

w~K !5win~K !1wb~K ! ~5.12a!

into an inlet driven part

w j
in~K !5H 2

wp~x50!

K2Kp
if j 5p51,3,5

0 if j 5m52,4,6,

~5.12b!
1-13
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depending only on the externally imposed boundary con
tion at the inlet and into a bulk driven part

w j
b~K !5H i

zp~K !

K2Kp
if j 5p51,3,5

i
zm~K !2zm~Km!

K2Km
otherwise.

~5.12c!

In real space one has

w j
in~x!5H eiK px wp~x50! if j 5p51,3,5

0 if j 5m52,4,6,
~5.13a!

w j
b~x!55 2eiK px E

0

x

dx8 e2 iK px8zp~x8! if j 5p51,3,5

eiK mx E
x

`

dx8 e2 iK mx8zm~x8! otherwise.

~5.13b!

Thus the inlet-sustained part is supported only by the in
boundary conditionwp(x50) and describes its propagatio
into the bulk,x.0. The bulk part of the fieldswp

b(x) (p
51,3,5) is sustained and determined by the fluctuat
forceszp(x8<x) to the left of the observation location—th
effect of the perturbation at locationx8 is propagated to the
right, i.e., towards the observation pointx with the ‘‘propa-
gator’’ eiK p(x2x8). On the other hand, fluctuations of th
fields wm

b (x) (m52,4,6) are generated and determined
forces zm(x8>x) operating to the right of the observatio
location. Here the response is propagated to the left tow
the observation pointx with the ‘‘propagator’’e2 iK m(x82x).
This again clearly shows the different physical roles~cf. Sec.
III ! that the characteristic exponentsKp and Km play: The
former, p51,3,5 ~latter, m52,4,6) describe downstream
~upstream! propagation of perturbations to the right~left!.

E. Decomposition of the fieldsC

We consider now the situation where boundary conditio
are imposed externally at the inletx50 on three of the origi-
nal hydrodynamic fieldsC j (x,v) @Eq. ~2.20b!#. The other
three boundary conditions are fixed by bulk forcing via t
nondivergence requirement~5.10!.

1. Boundary conditionsC j (xÄ0,v)

For the sake of definiteness we imposeexternallydeter-
mined boundary conditions on the three fieldsC45u,C5
5w,C65u. Then the boundary conditions on the remaini
three fieldsC1,2,3(x,v) can be separated into two parts,

C1,2,3~x50,v!5C1,2,3
in ~x50,v!1C1,2,3

b ~x50,v!,
~5.14a!

with
05630
i-

t

g

y

ds

s

S C1
in

C2
in

C3
in
D 5A S C4

C5

C6

D , S C1
b

C2
b

C3
b
D 5B S z2~K2!

z4~K4!

z6~K6!
D
~5.14b!

at x50 according to Eq.~A4! in Appendix A. The 333
matricesA(v) andB(v) @Eq. ~A5!# contain matrix elements
of T(v) and T 21(v). Note that the contributionC1,2,3

in (x
50,v) contains only the externally controlled boundary co
ditions C4,5,6(x50,v) at the inlet. The bulk partC1,2,3

b (x
50,v) ensures the nondivergence condition. It is in this w
that the bulk forcingzm(Km)5( j 51

6 (T 21)m jj j (Km) enters
into the boundary conditionC1,2,3(x50,v).

Since the field componentsC4,5,6(x50,v) are chosen to
be genuinely externally determined at the inlet we have

C4,5,6~x50,v!5C4,5,6
in ~x50,v!, C4,5,6

b ~x50,v!50
~5.15!

in our notation.

2. Field decomposition

With the decomposition~5.14! and~5.15! of the boundary
conditions one can immediately decompose also the fie
C(K) @Eq. ~5.8!# into

C~K,v!5Cin~K,v!1Cb~K,v!, ~5.16a!

with

Cin~K,v!52G~K,v!Cin~x50,v!, ~5.16b!

Cb~K,v!5G~K,v!@ i j~K,v!2Cb~x50,v!#.
~5.16c!

HereCin(K,v) is supported only by the externally impose
inlet boundary conditions that enter directly intoC4,5,6

in (x
50,v) @Eq. ~5.15!# and indirectly intoC1,2,3

in (x50,v) @Eq.
~5.14b!#. The bulk partCb is determined solely by the fluc
tuating forcesj that enter directly into Eq.~5.16c! and in
addition indirectly intoC1,2,3

b (x50,v) @Eq. ~5.14b!# via the
nondivergence constraint. In real space one has

C~x,v!5Cin~x,v!1Cb~x,v!, ~5.17a!

with

Cin~x,v!52 G~x,v! Cin~x50,v!, ~5.17b!

Cb~x,v!5E
0

x

dx8 G~x2x8,v! j~x8,v!

2G~x,v!Cb~x50,v!. ~5.17c!

Note that Eq.~5.16! or ~5.17! together with Eqs.~5.14!
and ~5.15! is the complete physical solution for the field
C(v) that is constructed such as to explicitly obey the e
ternally imposed and the implicitly physically require
boundary conditions. The propagator matrixG(K,v) @Eq.
~5.8b!# entering intoCin(K,v) @Eq. ~5.16b!# contains poles
1-14
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at all six locations in the complex plane given by the ch
acteristic spatial eigenvaluesK j . However, C(x50) was
designed to ensure that the residues of the poles ofC(K) in
the lower complex half plane atKm (m52,4,6) are zero for
arbitrarily chosenC4,5,6(x50) and arbitrary realizations o
forcesj(K). Thus each of the contributions,Cin(K) as well
as Cb(K), do not contain poles atK2,4,6 separately. There
fore only spatial variations;eiK px (p51,3,5) occur in
Cin(x,v) ~5.17b!. Moreover, the terms;eiK mx (m52,4,6)
in Cb(x,v) @Eq. ~5.17c!# play only the role of ‘‘propaga-
tors’’ in the upstream direction as seen already in the sim
case of Sec. V D.

F. Decomposition of correlation functions

Here we evaluate the correlation function matrix

Ci j ~x,v;x8,v8!5^C i~x,v!@C j~x8,v8!#* & ~5.18!

for the case that the boundary conditionsC4,5,6(x50,v) for
the fieldsu,w,u that are imposed externally at the inlet a
statistically independent from the bulk forcesj(x,v). After
all, these forces were assumed to bed correlated in space
Then the fieldCin is uncorrelated with the bulk partCb.
Consequently, the correlation matrix~5.18! splits into an in-
let part and into a bulk part

Ci j 5C i j
in1C i j

b . ~5.19!

Here C i j
in5^C i

in@C j
in#* & contains correlations ofCin @Eq.

~5.17b!# while C i j
b 5^C i

b@C j
b#* & contains correlations of the

field Cb @Eq. ~5.17c!# only.
Ci j (x,v;x,v8) contains the factor 2pd(v2v8). It fol-

lows from the fact that the forcing processj(x,t), as well as
the boundary conditionsC4,5,6(x50,t) are taken as statisti
cally stationary and that in the considered long-time lim
initial-value dependencies have relaxed away. Note, h
ever, that the processC(x,t) is spatially not translationa
invariant due to the boundary atx50. Thus Eq.~5.18! de-
pends onx andx8 separately.

1. Inlet part

The inlet part of the correlation matrix

C in~x,v;x8,v8!5G~x,v!D~v,v8!G †~x8,v8! ~5.20!

is given by the propagator matrixG ~5.9! and its Hermitian
adjoint G † multiplying the correlation function matrix

Dj j 8~v,v8!5^C j
in~x50,v!@C j 8

in
~x50,v8!#* &

~5.21!

of the fieldCin(x50,v). The latter is determined accordin
to @Eqs. ~5.14b! and ~5.15!# by the externally imposed field
componentsC4,5,6(x50,v). The case of nonstochastic inle
conditions is included as a special case in Eq.~5.21! as well;
in particular, also the trivial case ofCin(x50,v)50 where
D5C in50.

Consider now the spectrum
05630
-

r

t
-

Ci j
in~x,v!5

C i j
in~x,v;x,v8!

2p d~v2v8!
~5.22!

of the correlation matrix~5.20! taken at the common positio
x. Into its spatial evolution there enter only the three exp
nentialseiK px (p51,3,5) as explained at the end of Sec. V
Thus if the driving is in the convectively unstable regim
where ImK1,3 become negative the spectrum~5.22! is domi-
nated for positivev at largex by the growth behavior

Ci j
in~x,v!.Ei j ~v!e22 Im K1(v)x, ~5.23a!

resulting fromeiK 1x. For v,0 the growth is dominated by
Im K3(v)5Im K1(2v). The matrix

E~v!5S~v!
D~v,v8!

2p d~v2v8!
S †~v! ~5.23b!

is given by the inlet correlation matrix~5.21! and

Si j ~v!5Ti1~v! T 1 j
21~v!. ~5.23c!

In the subcritical driving rangee,0, where ImKp.0 for all
p51,3,5 all correlation spectraCin(x,v) @Eq. ~5.22!# decay
to zero forx→`. Their decay is dominated by the imagina
part of the characteristic exponentKp that is closest to the
real axis in complex wave-number space. For positivev
~and Pe! this is K1 whene is only slightly subcritical.

2. Bulk part

The evaluation of the bulk part

Cj j 8
b

~x,v;x8,v8!5^C j
b~x,v!@C j 8

b
~x8,v8!#* & ~5.24!

of the correlation matrix is more complicated since the flu
tuating forcesj enter into the first term ofCb @Eqs.~5.16c!
and ~5.17c!# explicitly and into the second term implicitly
via the conditionC1,2,3

b (x50). The latter reads, e.g., for

C1
b~x50!5B1m zm~Km!5B1m T m j

21 j j~Km! ~5.25!

according to Eq.~5.14b! with B(v) given in Appendix A. In
Eq. ~5.25! sums overm52,4,6 andj 51,2, . . . ,6 areimplied.
Thus the stochastic forces enter intoC1,2,3

b (x50) via their
Laplace transformation.

Instead of directly evaluating Eq.~5.24! in real space we
preferred the algebraic method of determining the correla
matrix in Laplace space,

Cj j 8
b

~K,v;K8,v8!5^C j
b~K,v!Ĉ j 8

b
~K8,v8!&, ~5.26!

and then perform a double-Laplace transform back to r
space. The rational functions ofK,K8 appearing in
Eq. ~5.26! can easily be transformed back, say, w
MATHEMATICA . In Eq. ~5.26! and in the following we denote
for better identification of the two functions entering into E
~5.24! the Laplace transform of a function@ f (x)#* by an
additional caret, i.e.,
1-15
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D. JUNG. M. LÜCKE, AND A. SZPRYNGER PHYSICAL REVIEW E63 056301
@ f ~x!#* ↔ f̂ ~K !52@ f ~2K* !#* , ~5.27!

where f (x)↔ f (K).
In order to give an impression of the algebraical proble

involved in Eq. ~5.26! we introduce the auxiliary effective
forcing field

je f f~K,v!5j~K,v!1 i Cb~x50,v! ~5.28!

in order to keep the expressions handy. The choice of
superscripteff for effective is motivated by the fact tha
C1,2,3

b (x50,v) is given by the stochastic bulk forcesj(Km)
(m52,4,6) as indicated in Eq.~5.25!. Then one finds with
Cb(K,v)5 iG(K,v) j e f f(K,v) that

Cj j 8
b

~K,v;K8,v8!

5Gj l ~K,v!^j l
e f f~K,v! ĵ l 8

e f f
~K8,v8!&Ĝj 8 l 8~K8,v8!.

~5.29!

With j e f f being linearly related via Eqs.~5.28! and~5.25! to
j one can express the correlation function ofj e f f entering
into Eq. ~5.29! in terms of the forcing correlation matri
~Appendix B!

Fj j 8~Q,v;Q8,v8!5^j j~Q,v! ĵ j 8~Q8,v8!&

52p d~v2v8!
Nj j 8~Q,Q8!

Q1Q8
.

~5.30!

HereQ denotes eitherK or K2,4,6 andQ8 stands for eitherK8
or K2,4,6. The matrixN @Eq. ~B3!# in the numerator of Eq.
~5.30! containsQ and Q8 up to bilinear orderQQ8. The
propagator matrixG entering into Eq.~5.29! contains sums
of simple pole terms;1/(K2K j ). Thus one can apply par
tial fraction decompositions and the method of residues
the double-Laplace transform of Eq.~5.29! back to real
space.

G. Correlation spectra

Let us discuss the spatial evolution of the correlat
spectra of the temperature fluctuationsu(x,v)5C6(x,v) as
a representative example. Those ofw are quite similar to
those ofu; andw andu are related to each other via incom
pressibility ~2.18a!.

The inlet part@Eqs. ~5.20!–~5.23!# is essentially domi-
nated for positivev by the contribution from the growth
decay behavioreiK 1x coming from the ‘‘critical’’ character-
istic exponent K1 as discussed in Sec. V F 1. So w
concentrate here on the bulk part

Ci j
b ~x,v!5

^C i
b~x,v!@C j

b~x,v8!#* &

2p d~v2v8!
~5.31!

of the spectrum of fluctuations taken at a common posit
x5x8.

Figure 6~a! shows the bulk-generated partCuu
b (x,v) of
05630
s

e

n

n

the spectrum as a three dimensional plot over thex2v plane
of variables for a slightly subcritical driving (e520.05)
with through-flow, Pe52. The critical frequency isvc
5kc Pe. With the decomposition of the fieldsC into exter-
nally and internally generated parts one hasC6

b(x50)
5ub(x50)50 Eq. ~5.15! so thatCuu

b (x50,v)50. On the
other hand, forx→` the bulk-generated temperature flu
tuation spectrum approaches in the subcritical driving sit
tion a finite limit spectrumCuu

b (x5`,v). The latter is the
same as the wave-number integral,*2`

` (dk/2p)Cuu(k,v),
Eq. ~4.18!, over the fluctuation spectrum in doubly infinit
systems. The approach to this limit,}(12e22Im K1x), is
governed by the spatial eigenvalueK1 that is closest to the
real axis. On the other hand, the variation near the inle
caused by the contribution from the other exponentials.

Figure 6~b! showsCuu
b (x,v) in the convectively unstable

regime. The driving ise50.016. The other parameters a
the same as in Fig. 6~a!. Here the correlation spectrum
Cuu

b (x,v) diverges;e22 Im K1x for large x in the critical
bandvc20.47,v,vc10.52 of negative ImK1(v). Mean-
squared fluctuations with the critical frequencyvc have the
highest downstream growth at the inlet and are dominated
the eigenvalueK1. Outside the critical-frequency band a
perturbations are damped.

The influence of through-flow on the growth length

FIG. 6. Bulk partCuu
b (x,v) of the correlation spectrum of tem

perature fluctuations in a semi-infinite system with through-fl
Péclet number Pe52 subject to the boundary conditionub(x
50,v)50. For the subcritical drivinge520.05 ~a! Cuu

b grows in
downstream direction to a finite bulk level depending on freque
v. For the supercritical drivinge50.016 ~b! the correlation spec-
trum diverges }e22 Im K1(v)x within the frequency band (vc

20.47,vc10.52).Cuu
b is reduced by Ra2Q2/2p. The Prandtl num-

ber iss51.
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bulk fluctuations withvc is presented in Fig. 7. At the su
percritical heating e50.016 the correlation spectr
Cuu

b (x,vc) are shown for increasing group velocities Pe
convectively unstable states. The through-flow expands
influence of the inlet conditions@in our caseu in(x50,v)
50] into the bulk. Thus higher the Pe the longer is t
growth length of mean-temperature fluctuations since
downstream variation;e22 Im Kpx (p51,3,5) flattens and
the upstream modes;eiK mx (m52,4,6) decay faster in up
stream direction.

VI. CONCLUSIONS

We have studied fluctuations of the hydrodynamic fie
in laterally infinite and semi-infinite Rayleigh-Be´nard sys-
tems with lateral through-flow in the vicinity of the thresho
for onset of convection. The linearized field equations
cluding additive thermal forcing have been projected into
subspace with the critical variation inz andy directions for
free-slip horizontal boundaries.

In addition to the standard temporal growth analysis
modes;eikx, with real k we have studied the spatial re
sponse;eiK (v)x of an oscillatory modee2 ivt with real v.
There are six different characteristic spatial expone
K j (v). Their imaginary parts determine the spatial grow
or decay of the modes. In the subcritical driving regimee
,0, three of them—namely,K1,3,5 (K2,4,6) in our notation—
lie in the upper~lower! complex wave-number plane. Th
contributions;eiK 1,3,5x (eiK 2,4,6x) determine the evolution o
the fields to the right~left!, i.e., in downstream~upstream!
direction for through-flow in positivex direction. With in-
creasing through-flow the downstream~upstream! growth
lengths 1/ImK1,3,5 (21/ImK2,4,6) increase~decrease!. When
the Rayleigh number becomes supercritical the ‘‘critica
eigenvaluesK1 and K3 cross the real axis atk56kc with
v56vc , respectively, fore50. Thereafter in the super
critical regime, 0,e,econv

c below the boundaryeconv
c be-

tween the convectively and absolutely unstable driving ra
all perturbations with frequencies around6vc for which
Im K1,3(v),0 are amplified in downstream direction. Th

FIG. 7. Bulk-generated mean-squared temperature fluctuat
Cuu

b (x,vc ,Pe) with critical frequencyvc as a function of down-
stream distancex from the inlet and through-flow Pe´clet number Pe
for e50.016 in the convectively unstable regime. The large-x be-
havior is dominated bye22 Im K1(vc ,Pe)x. Cuu

b is reduced by
Ra2Q2/2p. The Prandtl number iss51.
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other eigenvalues do not show such a distinctive beha
close to e50. The eigenvaluesK5,6 with relatively large
imaginary parts implying large spatial variations are
purely hydrodynamic origin. They do not appear in the GL
approximation. The agreement of both descriptions impro
when reducingueu.

In Sec. IV we have discussed the fluctuation dynamics
unrestricted geometry. By comparing the residue of the c
relation functions ate→02 with the corresponding GLE ex
pressions the stochastic forcing strengthg of the latter could
be identified in terms of the strength of stress and heat
rent fluctuations. For smallueu the correlation spectra
Cww(k,v) and Cuu(k,v) of velocity and temperature fluc
tuations, respectively, compare rather well with the GLE a
proximation with a better agreement in the former case. T
total spectral weightCww(x50,v) in wave-number space
deviates with increasing through-flow more and more fro
the GLE approximation due to substantial contribution fro
the high-momentum region. In frequency space the co
sponding total spectral weights,Cww(k,t50), for the GLE
and HE differ at largek as a result of an overestimated h
drodynamic weight}k2.

In Sec. V we have investigated how a restricted geome
and inlet conditions atx50 influence the statistical dynam
ics of hydrodynamic fluctuations in downstream directio
We have considered a statistically stationary situation w
time translational invariant correlations of the fluctuatio
that are evaluated inv space. But because of the restrict
geometry the system is not translational invariant. Theref
we have used spatial Laplace transformations as a conve
tool to separate the effects of inlet forcing at the bounda
x50, and of bulk thermal forcing. Moreover, this metho
allows also for an algebraical evaluation of correlation fun
tions having simple pole structures in Laplace space that
straightforwardly be transformed back into real space. T
six characteristic spatial exponents mark the pole positio

The hydrodynamic field equations require six bounda
conditions. Three can be imposed freely at the inlet and
other three are chosen such that the fluctuations do no
verge atx→` in the subcritical driving range. These cond
tions imply that in Laplace space the residue of the pole
K2,4,6 in the lower complex half plane vanish. That, in tur
fixes the remaining conditions atx50 in terms of bulk ther-
mal forcing properties. In this way one can separate the c
tribution to the fluctuating fields and their correlations th
are caused by externally imposed boundary conditions ax
50 on the one hand and bulk thermal forcing on the oth
This decomposition is exemplified for the experimentally r
evant situation that the temperature and velocity fields
specified at the inlet.

For subcritical drivinge,0, the spectra of the fluctuatin
fields approach forx→` the corresponding ones in an infi
nite system}@12e22 Im K1(v)x# whenv is close tovc . For
v close to2vc it is the other ‘‘critical’’ exponentK3 that
dominates the growth. In the supercritical, convectively u
stable driving range the fluctuation amplitudes diver
}e22 Im K1(v)x at largex whenv lies in the band of modes
close tovc for which ImK1(v),0. Increasing the through
flow causes the growth length of fluctuations to increase

ns
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Experimental investigations@44# of Rayleigh-Bénard con-
vection in the presence of a lateral flow have been d
predominantly in the absolutely unstable parameter reg
where the convection structures are well developed
largely insensitive to perturbations. While the necessity
distinguish also in this open-flow system between convec
and absolute instability@45# is becoming common knowl
edge, there is a lack of convection experiments that are
cifically designed to measure the downstream growth
evolution not only of amplitudes but also of fluctuation spe
tra of flow intensity and/or temperature. Such experime
performed in long and narrow convection channels, are b
suited to determine the influence of inlet and bulk therm
noise. These data should allow at least a qualitative comp
son with our free-slip theoretical results for the spatial e
lution of the frequency spectra of the fluctuations.
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APPENDIX A: BOUNDARY CONDITIONS AT xÄ0

In Sec. V C we have seen that one has to impose
boundary conditions~5.10! on the fields withm52,4,6 in
order to avoid unphysical divergences atx→` for subcriti-
cal driving. With the three even componentsm52,4,6 of the
transformed fieldsw5T 21 C @Eq. ~5.7!# being determined
internally at x50 according to Eq.~5.10! by the Laplace
transformation of the bulk transformed-field forcesz
5T 21 j the odd componentswp with p51,3,5 still require a
boundary condition atx50.

In this appendix we externally impose as one poss
choice boundary values on the fieldsC45u, C55w, and
C65u. Then with w2,4,6(x50) being fixed internally and
with C4,5,6(x50) being fixed externally we explicitly evalu
ate the remaining other componentsw1,3,5(x50) and
C1,2,3(x50) of the transformed and of the untransform
field set, respectively. To that end we decompose the tr
formation relationsC5Tw andw5T 21 C as follows:

S w1

w3

w5

D 5a S C4

C5

C6

D 1b S C1

C2

C3

D , ~A1a!

S C1

C2

C3

D 5c S w2

w4

w6

D 1d S w1

w3

w5

D , ~A1b!

a5S T 14
21 T 15

21 T 16
21

T 34
21 T 35

21 T 36
21

T 54
21 T 55

21 T 56
21
D , b5S T 11

21 T 12
21 T 13

21

T 31
21 T 32

21 T 33
21

T 51
21 T 52

21 T 53
21
D ,

~A2a!
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e
e
d

o
e

e-
d
-
s,
st
l
ri-
-

e

e

s-

c5S T12 T14 T16

T22 T24 T26

T32 T34 T36

D , d5S T11 T13 T15

T21 T23 T25

T31 T33 T35

D .

~A2b!

Combining Eq.~A1b! with Eq. ~A1a! one immediately finds
the sought-after relations between the fields atx50,

S w1

w3

w5

D 5~12bd!21 a S C4

C5

C6

D 1~12bd!21 bc S w2

w4

w6

D ,

~A3!

S C1

C2

C3

D 5~12db!21 da S C4

C5

C6

D 1~12db!21 c S w2

w4

w6

D .

~A4!

Comparing this form with Eq.~5.14! we identify

A5~12db!21da, B5~12db!21c. ~A5!

Equations~A3! and ~A4! show explicitly how the boundary
conditions onw1,3,5 and onC1,2,3 are related to the externall
imposed conditionsC4,5,6 and the internally required condi
tions w2,4,6 involving bulk forces. Note that Eqs.~A3! and
~A4! require the matrix (12db) to be invertible.

We should like to stress here that in general one can
only three arbitrarily chosen field components out of the
components of the field vectorC at the inlet,x50. The
remaining three boundary conditions for the system~5.2! of
six differential equations of first order are furnished by t
conditions ~5.10! on w2,4,6(x50) that ensure the correc
physical behavior of the solution atx→`. Thus if one
chooses to impose external conditions on threeC fields other
thanC4,5,6 one gets in a way that is completely analogous
Eqs. ~A1! and ~A2! matrix relations that expressw1,3,5 in
terms ofw2,4,6 and the three chosenC fields and the remain-
ing threeC fields in terms of the chosen ones andw2,4,6.

APPENDIX B: LAPLACE TRANSFORMED FORCE
CORRELATIONS

Here we compile formulas for the double-spatial Lapla
transformation of the force correlation functions

^j j~x,v!@j j 8~x8,v8!#* &↔↔^j j~K,v!ĵ j 8~K8,v8!&

5Fj j 8~K,v;K8,v8!. ~B1!

Here the caret indicates the Laplace transformation o
conjugate-complex function in real space as introduced
Eq. ~5.27!. Since@j(x,v)#* 5j(x,2v) as a consequence o
the reality ofj(x,t) one has

ĵ j 8~K8,v8!5j j 8~K8,2v8!. ~B2!

From Eqs.~2.19! and ~2.20b! one finds
1-18
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Fj j 8~K,v;K8,v8!52p d~v2v8!
Nj j 8~K,K8!

K1K8
~B3a!

with

N1152i
Q2

s2 F S z

nr
1

4

3Dp22KK8G , ~B3b!

N1352
Q2

s
pFK2S z

nr
2

2

3DK8G , ~B3c!

N2252i Q1~p22KK8!, ~B3d!
tt

A

se

05630
N3152
Q2

s
pFK82S z

nr
2

2

3DKG , ~B3e!

N3352i Q2Fp22S z

nr
1

4

3DKK8G , ~B3f!

andNj j 850 for all otherj , j 8. At the inlet,x50, we discard
the fluctuating stressess11 and s33 and the lateral compo
nent of the fluctuating heat current. Withu,w,u being fixed
at x50 they do not enter into the correlation function
~5.18!.
A

tt.

, J.
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@27# H. W. Xi, J. Viñals, and J. D. Gunton, Physica A177, 356
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@45# H. W. Müller, M. Lücke, and M. Kamps, Europhys. Lett.10,

451 ~1989!.
1-20


